p53 suppresses lipid droplet-fueled tumorigenesis through phosphatidylcholine

p53 通过磷脂酰胆碱抑制脂质滴引发的肿瘤发生

阅读:2
作者:Xiuduan Xu, Jianqin Wang, Li Xu, Peng Li, Peng Jiang

Abstract

Choline deficiency causes disorders including hepatic abnormalities and is associated with an increased risk of multiple types of cancer. Here, by choline-free diet-associated RNA-Seq analyses, we found that the tumor suppressor p53 drives the Kennedy pathway via PCYT1B to control the growth of lipid droplets (LDs) and their fueling role in tumorigenesis. Mechanistically, through upregulation of PCYT1B, p53 channeled depleted choline stores to phosphatidylcholine (PC) biosynthesis during choline starvation, thus preventing LD coalescence. Cells lacking p53 failed to complete this response to choline depletion, leading to hepatic steatosis and tumorigenesis, and these effects could be reversed by enforcement of PCYT1B expression or restoration of PC abundance. Furthermore, loss of p53 or defects in the Kennedy pathway increased surface localization of hormone-sensitive lipase on LDs to release specific fatty acids that fueled tumor cells in vivo and in vitro. Thus, p53 loss leads to dysregulation of choline metabolism and LD growth and couples perturbed LD homeostasis to tumorigenesis.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。