Essential roles of Xenopus TRF2 in telomere end protection and replication

非洲爪蟾 TRF2 在端粒末端保护和复制中的重要作用

阅读:5
作者:Keiko Muraki, Akira Nabetani, Atsuya Nishiyama, Fuyuki Ishikawa

Abstract

TRF1 and TRF2 are double-stranded (ds) telomere DNA-binding proteins and the core members of shelterin, a complex that provides the structural and functional basis of telomere functions. We have reported that unlike mammalian TRF1 that constitutively binds to chromatin, Xenopus TRF1 (xTRF1) associates with mitotic chromatin but dissociates from interphase chromatin reconstituted in Xenopus egg extracts. This finding raised the possibility that xTRF1 and Xenopus TRF2 (xTRF2) contribute to telomere functions in a manner different from mammalian TRF1 and TRF2. Here, we focused on the role of xTRF2. We prepared chromatin reconstituted in egg extracts immunodepleted for xTRF2. Compared to mock-depleted nuclei, DNA damage response at telomeres was activated, and bulk DNAs were poorly replicated in xTRF2-depleted nuclei. The replication defect was rescued by inactivating ATR through the addition of anti-ATR neutralizing antibody, suggesting that ATR plays a role in the defect. Interestingly, the bulk DNA replication defect, but not the DNA damage response at telomeres, was rescued by supplementing the xTRF2-depleted extracts with recombinant xTRF2 (rTRF2). We propose that xTRF2 is required for both efficient replication of bulk DNA and protection from the activation of the DNA damage checkpoints pathway, and that those two functions are mechanistically separable.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。