AMPK-mTORC1 pathway mediates hepatic IGFBP-1 phosphorylation in glucose deprivation: a potential molecular mechanism of hypoglycemia-induced impaired fetal growth

AMPK-mTORC1 通路介导葡萄糖缺乏时肝脏 IGFBP-1 磷酸化:低血糖引起胎儿生长受损的潜在分子机制

阅读:9
作者:Jenica H Kakadia, Muhammad U Khalid, Ilka U Heinemann, Victor K Han

Abstract

Mechanisms underlying limitations in glucose supply that restrict fetal growth are not well established. IGF-1 is an important regulator of fetal growth and IGF-1 bioavailability is markedly inhibited by IGFBP-1 especially when the binding protein is hyperphosphorylated. We hypothesized that the AMPK-mTORC1 pathway increases IGFBP-1 phosphorylation in response to glucose deprivation. Glucose deprivation in HepG2 cells activated AMPK and TSC2, inhibited mTORC1 and increased IGFBP-1 secretion and site-specific phosphorylation. Glucose deprivation also decreased IGF-1 bioavailability and IGF-dependent activation of IGF-1R. AICAR (an AMPK activator) activated TSC2, inhibited mTORC1, and increased IGFBP-1 secretion/phosphorylation. Further, siRNA silencing of either AMPK or TSC2 prevented mTORC1 inhibition and IGFBP-1 secretion and phosphorylation in glucose deprivation. Our data suggest that the increase in IGFBP-1 phosphorylation in response to glucose deprivation is mediated by the activation of AMPK/TSC2 and inhibition of mTORC1, providing a possible mechanistic link between glucose deprivation and restricted fetal growth.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。