Flexible Nanocomposites Based on Polydimethylsiloxane Matrices with DNA-Modified Graphene Filler: Curing Behavior by Differential Scanning Calorimetry

基于聚二甲基硅氧烷基质和 DNA 改性石墨烯填料的柔性纳米复合材料:通过差示扫描量热法测定固化行为

阅读:4
作者:Elisa Toto, Susanna Laurenzi, Maria Gabriella Santonicola

Abstract

Novel silicone-based nanocomposites with varied elastic properties were prepared by blending standard polydimethylsiloxane (PDMS) with a lower viscosity component (hydroxyl-terminated PDMS) and integrating a graphene nanoplatelets (GNP) filler modified by strands of deoxyribonucleic acid (DNA). The curing behavior of these nanocomposites was studied by dynamic and isothermal differential scanning calorimetry. The activation energies of the polymerization reactions were determined using the Kissinger method and two model-free isoconversional approaches, the Ozawa-Flynn-Wall and the Kissinger-Akahira-Sunose methods. Results show that the complex trend of the curing behavior can be described using the isoconversional methods, unveiling lower activation energies for the nanocomposites with standard PDMS matrices. The role of the DNA modification of graphene on the curing behavior is also demonstrated. The curing reactions of the nanocomposites with the PDMS matrix are favored by the presence of the GNP-DNA filler. PDMS/PDMS-OH blends generate softer nanocomposites with hardness and reduced elastic modulus that can be tuned by varying the amount of the filler.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。