Metal Removal from Nickel-Containing Effluents Using Mineral-Organic Hybrid Adsorbent

使用矿物-有机混合吸附剂去除含镍废水中的金属

阅读:5
作者:Inga Zinicovscaia, Nikita Yushin, Dmitrii Grozdov, Konstantin Vergel, Nadezhda Popova, Grigoriy Artemiev, Alexey Safonov

Abstract

Nickel is one of the most dangerous environmental pollutants and its removal from wastewater is an important task. The capacity of a mineral-organic hybrid adsorbent, consisting of Shewanella xiamenensis biofilm and zeolite (clinoptilolite of the Chola deposit), to remove metal ions from nickel-containing batch systems under different experimental conditions was tested. The obtained biosorbent was characterized using neutron activation, SEM, and FTIR techniques. It was established that maximum removal of cations, up to 100%, was achieved at pH 6.0. Several mathematical models were applied to describe the equilibrium and kinetics data. The maximum adsorption capacity of the hybrid biosorbent, calculated using the Langmuir model, varied from 3.6 to 3.9 mg/g. Negative Gibbs energy values and positive ∆H° values indicate the spontaneous and endothermic character of the biosorption process. The effects of several parameters (pH and biosorbent dosage) on Ni(II) removal from real effluent, containing nickel with a concentration of 125 mg/L, were investigated. The optimal pH for Ni(II) removal was 5.0-6.0 and an increase of sorbent dosage from 0.5 to 2.0 led to an increase in Ni(II) removal from 17% to 27%. At two times effluent dilution, maximum Ni(II) removal of 26% was attained at pH 6.0 and sorbent dosage of 1.0 g. A 12-fold effluent dilution resulted in the removal of 72% of Ni(II) at the same pH and sorbent dosage values. The obtained hybrid biosorbent can be used for Ni(II) removal from industrial effluents with low Ni(II) concentrations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。