Single Amino Acid Substitutions Surrounding the Icosahedral Fivefold Symmetry Axis Are Critical for Alternative Receptor Usage of Foot-and-Mouth Disease Virus

围绕二十面体五重对称轴的单个氨基酸取代对于口蹄疫病毒的替代受体使用至关重要

阅读:8
作者:Xiao-Hua Gong, Xing-Wen Bai, Ping-Hua Li, Hui-Fang Bao, Meng Zhang, Ying-Li Chen, Pu Sun, Hong Yuan, Lei Huang, Xue-Qing Ma, Yuan-Fang Fu, Yi-Mei Cao, Kun Li, Jing Zhang, Zhi-Yong Li, Dong Li, Zeng-Jun Lu, Zai-Xin Liu

Abstract

The integrins function as the primary receptor molecules for the pathogenic infection of foot-and-mouth disease virus (FMDV) in vivo, while the acquisition of a high affinity for heparan sulfate (HS) of some FMDV variants could be privileged to facilitate viral infection and expanded cell tropism in vitro. Here, we noted that a BHK-adapted Cathay topotype derivative (O/HN/CHA/93tc) but not its genetically engineered virus (rHN), was able to infect HS-positive CHO-K1 cells and mutant pgsD-677 cells. There were one or three residue changes in the capsid proteins of O/HN/CHA/93tc and rHN, as compared with that of their tissue-originated isolate (O/HN/CHA/93wt). The phenotypic properties of a set of site-directed mutants of rHN revealed that E83K of VP1 surrounding the fivefold symmetry axis was necessary for the integrin-independent infection of O/HN/CHA/93tc. L80 in VP2 was essential for the occurrence of E83K in VP1 during the adaptation of O/HN/CHA/93wt to BHK-21 cells. L80M in VP2 and D138G in VP1 of rHN was deleterious, which could be compensated by K83R of VP1 for restoring an efficient infection of integrin-negative CHO cell lines. These might have important implications for understanding the molecular and evolutionary mechanisms of the recognition and binding of FMDV with alternative cellular receptors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。