Production of ROS by Gallic Acid Activates KDM2A to Reduce rRNA Transcription

没食子酸产生的 ROS 激活 KDM2A 以降低 rRNA 转录

阅读:5
作者:Yuji Tanaka, Hideru Obinata, Akimitsu Konishi, Noriyuki Yamagiwa, Makoto Tsuneoka

Abstract

Metformin, which is suggested to have anti-cancer effects, activates KDM2A to reduce rRNA transcription and proliferation of cancer cells. Thus, the specific activation of KDM2A may be applicable to the treatment of cancers. In this study, we screened a food-additive compound library to identify compounds that control cell proliferation. We found that gallic acid activated KDM2A to reduce rRNA transcription and cell proliferation in breast cancer MCF-7 cells. Gallic acid accelerated ROS production and activated AMPK. When ROS production or AMPK activity was inhibited, gallic acid did not activate KDM2A. These results suggest that both ROS production and AMPK activation are required for activation of KDM2A by gallic acid. Gallic acid did not reduce the succinate level, which was required for KDM2A activation by metformin. Metformin did not elevate ROS production. These results suggest that the activation of KDM2A by gallic acid includes mechanisms distinct from those by metformin. Therefore, signals from multiple intracellular conditions converge in KDM2A to control rRNA transcription. Gallic acid did not induce KDM2A-dependent anti-proliferation activity in non-tumorigenic MCF10A cells. These results suggest that the mechanism of KDM2A activation by gallic acid may be applicable to the treatment of breast cancers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。