Liquid crystal elastomer based dynamic device for urethral support: Potential treatment for stress urinary incontinence

基于液晶弹性体的尿道支撑动态装置:压力性尿失禁的潜在治疗方法

阅读:5
作者:Seelay Tasmim, Zuha Yousuf, Farial S Rahman, Emily Seelig, Abigail J Clevenger, Sabrina N VandenHeuvel, Cedric P Ambulo, Shreya Raghavan, Philippe E Zimmern, Mario I Romero-Ortega, Taylor H Ware

Abstract

Stress urinary incontinence (SUI) is characterized by the involuntary loss of urine due to increased intra-abdominal pressure during coughing, sneezing, or exercising. SUI affects 20-40% of the female population and is exacerbated by aging. Severe SUI is commonly treated with surgical implantation of an autologous or a synthetic sling underneath the urethra for support. These slings, however, are static, and their tension cannot be non-invasively adjusted, if needed, after implantation. This study reports the fabrication of a novel device based on liquid crystal elastomers (LCEs) capable of changing shape in response to temperature increase induced by transcutaneous IR light. The shape change of the LCE-based device was characterized in a scar tissue phantom model. An in vitro urinary tract model was designed to study the efficacy of the LCE-based device to support continence and adjust sling tension with IR illumination. Finally, the device was acutely implanted and tested for induced tension changes in female multiparous New Zealand white rabbits. The LCE device achieved 5.6% ± 1.1% actuation when embedded in an agar gel with an elastic modulus of 100 kPa. The corresponding device temperature was 44.9 °C ± 0.4 °C, and the surrounding agar temperature stayed at 42.1 °C ± 0.4 °C. Leaking time in the in vitro urinary tract model significantly decreased (p < 0.0001) when an LCE-based cuff was sutured around the model urethra from 5.2min ± 1min to 2min ±0.5min when the cuff was illuminated with IR light. Normalized leak point force (LPF) increased significantly (p = 0.01) with the implantation of an LCE-CB cuff around the bladder neck of multiparous rabbits. It decreased significantly (p = 0.023) when the device was actuated via IR light illumination. These results demonstrate that LCE material could be used to fabricate a dynamic device for treating SUI in women.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。