Disruption of metabotropic glutamate receptor signalling is a major defect at cerebellar parallel fibre-Purkinje cell synapses in staggerer mutant mice

代谢型谷氨酸受体信号传导中断是 Staggerer 突变小鼠小脑平行纤维-浦肯野细胞突触的主要缺陷

阅读:4
作者:Kazuhiro Mitsumura, Nobutake Hosoi, Nobuhiko Furuya, Hirokazu Hirai

Abstract

Staggerer mutant mice have functional loss of a transcription factor, retinoid-related orphan receptor α (RORα), which is abundantly expressed in Purkinje cells (PCs) of the cerebellum.Homozygous staggerer (sg/sg)mice show cerebellar hypoplasia and congenital ataxia. Sg/sg mice serve as an important extreme mouse model of the hereditary spinocerebellar ataxia type 1 (SCA1), since it has been shown that RORα dysfunction is strongly correlated with SCA1 pathogenesis. However, synaptic abnormalities, especially at parallel fibre (PF)-PC synapses, in SCA1-related sg/sg mice have not been examined in detail electrophysiologically. In this study, we report that PFs can still establish functional synapses onto PCs in sg/sg mice in spite of reduction in the number of PF-PC synapses. Compared with PF-evoked EPSCs in the wild-type or heterozygotes, the success rate of the EPSC recordings in sg/sg was quite low (∼40%) and the EPSCs showed faster kinetics and slightly decreased paired pulse facilitation at short intervals. The prominent synaptic dysfunction is that sg/sg mice lack metabotropic glutamate receptor (mGluR)-mediated slow EPSCs completely. Neither intense PF stimulation nor an exogenously applied mGluR agonist, DHPG, could elicit mGluR-mediated responses.Western blot analysis in the sg/sg cerebellum revealed low-level expression of mGluR1 and TRPC3, both of which underlie mGluR-mediated slow currents in PCs. Immunohistochemical data demonstrated marked mislocalization of mGluR1 on sg/sg PCs.We found that mGluR-mediated retrograde suppression of PF-PC EPSCs by endocannabinoid is also impaired completely in sg/sg mice. These results suggest that disruption of mGluR signalling at PF-PC synapses is one of the major synaptic defects in sg/sg mice and may manifest itself in SCA1 pathology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。