Esco1 Acetylates Cohesin via a Mechanism Different from That of Esco2

Esco1 通过与 Esco2 不同的机制乙酰化黏连蛋白

阅读:5
作者:Masashi Minamino, Mai Ishibashi, Ryuichiro Nakato, Kazuhiro Akiyama, Hiroshi Tanaka, Yuki Kato, Lumi Negishi, Toru Hirota, Takashi Sutani, Masashige Bando, Katsuhiko Shirahige

Abstract

Sister chromatid cohesion is mediated by cohesin and is essential for accurate chromosome segregation. The cohesin subunits SMC1, SMC3, and Rad21 form a tripartite ring within which sister chromatids are thought to be entrapped. This event requires the acetylation of SMC3 and the association of sororin with cohesin by the acetyltransferases Esco1 and Esco2 in humans, but the functional mechanisms of these acetyltransferases remain elusive. Here, we showed that Esco1 requires Pds5, a cohesin regulatory subunit bound to Rad21, to form cohesion via SMC3 acetylation and the stabilization of the chromatin association of sororin, whereas Esco2 function was not affected by Pds5 depletion. Consistent with the functional link between Esco1 and Pds5, Pds5 interacted exclusively with Esco1, and this interaction was dependent on a unique and conserved Esco1 domain. Crucially, this interaction was essential for SMC3 acetylation and sister chromatid cohesion. Esco1 localized to cohesin localization sites on chromosomes throughout interphase in a manner that required the Esco1-Pds5 interaction, and it could acetylate SMC3 before and after DNA replication. These results indicate that Esco1 acetylates SMC3 via a mechanism different from that of Esco2. We propose that, by interacting with a unique domain of Esco1, Pds5 recruits Esco1 to chromatin-bound cohesin complexes to form cohesion. Furthermore, Esco1 acetylates SMC3 independently of DNA replication.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。