Automated procedure to detect subtle motor alterations in the balance beam test in a mouse model of early Parkinson's disease

用于检测早期帕金森病小鼠模型中平衡木测试中细微运动变化的自动化程序

阅读:5
作者:Raphaëlle Bidgood #, Maider Zubelzu #, Jose Angel Ruiz-Ortega, Teresa Morera-Herreras

Abstract

Parkinson's disease (PD) is the most common motor neurodegenerative disorder, characterised by aggregated α-synuclein (α-syn) constituting Lewy bodies. We aimed to investigate temporal changes in motor impairments in a PD mouse model induced by overexpression of α-syn with the conventional manual analysis of the balance beam test and a novel approach using machine learning algorithms to automate behavioural analysis. We combined automated animal tracking using markerless pose estimation in DeepLabCut, with automated behavioural classification in Simple Behavior Analysis. Our automated procedure was able to detect subtle motor deficits in mouse performances in the balance beam test that the manual analysis approach could not assess. The automated model revealed time-course significant differences for the "walking" behaviour in the mean interval between each behavioural bout, the median event bout duration and the classifier probability of occurrence in male PD mice, even though no statistically significant loss of tyrosine hydroxylase in the nigrostriatal system was found in either sex. These findings are valuable for early detection of motor impairment in early PD animal models. We provide a user-friendly, step-by-step guide for automated assessment of mouse performances in the balance beam test, which aims to be replicable without any significant computational and programming knowledge.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。