Peptide-YY3-36/glucagon-like peptide-1 combination treatment of obese diabetic mice improves insulin sensitivity associated with recovered pancreatic β-cell function and synergistic activation of discrete hypothalamic and brainstem neuronal circuitries

肽-YY3-36/胰高血糖素样肽-1 联合治疗肥胖糖尿病小鼠可改善胰岛素敏感性,与胰腺 β 细胞功能恢复以及下丘脑和脑干离散神经回路的协同激活有关

阅读:6
作者:Brandon B Boland, Rhianna C Laker, Siobhan O'Brien, Sadichha Sitaula, Isabelle Sermadiras, Jens Christian Nielsen, Pernille Barkholt, Urmas Roostalu, Jacob Hecksher-Sørensen, Sara Rubek Sejthen, Ditte Dencker Thorbek, Arthur Suckow, Nicole Burmeister, Stephanie Oldham, Sarah Will, Victor G Howard, B

Conclusions

These results reveal a therapeutic approach for obesity/T2D that improved insulin sensitivity and restored endogenous β-cell function. These data also highlight the potential association between the gut-brain axis in control of metabolic homeostasis.

Methods

In this study, we utilized long-acting analogues of GLP-1 and PYY3-36 (via Fc-peptide conjugation) to better characterize the synergistic pharmacological benefits of their co-administration on body weight and glycaemic regulation in obese and diabetic mouse models. Hyperinsulinemic-euglycemic clamps were used to measure weight-independent effects of Fc-PYY3-36 + Fc-GLP-1 on insulin action. Fluorescent light sheet microscopy analysis of whole brain was performed to assess activation of brain regions.

Objective

Obesity-linked type 2 diabetes (T2D) is a worldwide health concern and many novel approaches are being considered for its treatment and subsequent prevention of serious comorbidities. Co-administration of glucagon like peptide 1 (GLP-1) and peptide YY3-36 (PYY3-36) renders a synergistic decrease in energy intake in obese men. However, mechanistic details of the synergy between these peptide agonists and their effects on metabolic homeostasis remain relatively scarce.

Results

Co-administration of long-acting Fc-IgG/peptide conjugates of Fc-GLP-1 and Fc-PYY3-36 (specific for PYY receptor-2 (Y2R)) resulted in profound weight loss, restored glucose homeostasis, and recovered endogenous β-cell function in two mouse models of obese T2D. Hyperinsulinemic-euglycemic clamps in C57BLKS/J db/db and diet-induced obese Y2R-deficient (Y2RKO) mice indicated Y2R is required for a weight-independent improvement in peripheral insulin sensitivity and enhanced hepatic glycogenesis. Brain cFos staining demonstrated distinct temporal activation of regions of the hypothalamus and hindbrain following Fc-PYY3-36 + Fc-GLP-1R agonist administration. Conclusions: These results reveal a therapeutic approach for obesity/T2D that improved insulin sensitivity and restored endogenous β-cell function. These data also highlight the potential association between the gut-brain axis in control of metabolic homeostasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。