Long Noncoding RNA MALAT1 and Regulation of the Antioxidant Defense System in Diabetic Retinopathy

长链非编码 RNA MALAT1 与糖尿病视网膜病变抗氧化防御系统的调节

阅读:4
作者:Rakesh Radhakrishnan, Renu A Kowluru

Abstract

The retina experiences increased oxidative stress in diabetes, and the transcriptional activity of Nrf2, which is critical in regulating many antioxidant genes, is decreased. The nuclear movement/transcriptional activity of Nrf2 is mediated by its intracellular inhibitor Keap1, and retinal Keap1 levels are increased in diabetes. Gene expression is also regulated by long noncoding RNAs (LncRNAs). Our aim was to investigate the role of LncRNA MALAT1 in the regulation of Keap1-Nrf2-antioxidant defense in diabetic retinopathy. LncRNA MALAT1 expression (quantitative real-time PCR, immunofluorescence, and RNA sequencing), its interactions with Keap1 (FACS), Keap1-Nrf2 interactions, and transcription of the antioxidant response genes (immunofluorescence and nuclear RNA sequencing) were investigated in retinal endothelial cells exposed to high glucose. Glucose increased LncRNA MALAT1 levels by increasing Sp1 transcription factor binding at its promoter. Downregulation of LncRNA MALAT1 by its siRNA prevented glucose-induced increase in Keap1 and facilitated Nrf2 nuclear translocation and antioxidant gene transcription. Retinal microvessels from streptozotocin-induced diabetic mice and human donors with diabetic retinopathy also presented similar increases in LncRNA MALAT1 and its interactions with Keap1 and decreases in Nrf2-mediated antioxidant defense genes. Thus, LncRNA MALAT1, via Keap1-Nrf2, regulates antioxidant defense in diabetic retinopathy. Inhibition of LncRNA MALAT1 has potential to protect the retina from oxidative damage and to prevent or slow down diabetic retinopathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。