YY1 (Yin-Yang 1), a transcription factor regulating systemic inflammation, is involved in cognitive impairment of depression

YY1(阴阳1)是一种调节全身炎症的转录因子,与抑郁症的认知障碍有关

阅读:8
作者:Jing Lu, Kangyu Jin, Jianping Jiao, Ripeng Liu, Tingting Mou, Bing Chen, Zhihan Zhang, Chaonan Jiang, Haoyang Zhao, Zheng Wang, Rui Zhou, Manli Huang

Aim

Clinical and preclinical studies suggest that alterations in the peripheral and brain immune system are associated with the pathophysiology of depression, also leading to changes in local glucose metabolism in the brain. Here, the authors identified Yin-Yang 1 (YY1), a transcription factor closely associated with central and peripheral inflammation.

Conclusion

The current study suggests that the YY1-NF-κB-IL-1β inflammatory pathway may play an essential role in both mood changes and cognitive impairment in depression, and may be associated with changes in glucose metabolism in emotion regulation and cognition. These findings provide new evidence for the inflammatory mechanisms of depression.

Methods

Plasma levels of YY1, interleukin (IL) 6, and IL-1β in major depressive disorder (MDD) were collected before and after treatment with vortioxetine, and correlation with clinical and cognitive scores was studied. Chronic unpredictable mild stress was treated with vortioxetine. Micropositron emission tomography (microPET) was used to analyze glucose metabolism and mRNA, and the protein level of the YY1-nuclear factor κB (NF-κB)-IL-1β inflammatory pathway were measured in related brain regions.

Results

Plasma levels of YY1 and IL-1β were significantly increased in MDD and decreased after treatment with vortioxetine. Meanwhile, the level of YY1 in plasma was negatively correlated with cognitive functions in patients with MDD and positively correlated with the level of IL-1β in plasma. Compared with the control group, in chronic unpredictable mild stress rats, (microPET) analysis showed that the decrease of glucose metabolism in the hippocampus, entorhinal cortex, amygdala, striatum, and medial prefrontal cortex was reversed after treatment. mRNA and protein level of related molecular in YY1-NF-κB-IL-1β inflammatory pathway decreased in the hippocampus and was reversed by vortioxetine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。