Prediction of an immunogenic peptide ensemble and multi-subunit vaccine for Visceral leishmaniasis using bioinformatics approaches

使用生物信息学方法预测内脏利什曼病的免疫原性肽组合和多亚单位疫苗

阅读:4
作者:Manu Kupani, Rajeev Kumar Pandey, Sharad Vashisht, Satyendra Singh, Vijay Kumar Prajapati, Sanjana Mehrotra

Abstract

Visceral Leishmaniasis (VL) is a neglected tropical disease of public health importance in the Indian subcontinent. Despite consistent elimination initiatives, the disease has not yet been eliminated and there is an increased risk of resurgence from active VL reservoirs including asymptomatic, post kala azar dermatitis leishmaniasis (PKDL) and HIV-VL co-infected individuals. To achieve complete elimination and sustain it in the long term, a prophylactic vaccine, which can elicit long lasting immunity, is desirable. In this study, we employed immunoinformatic tools to design a multi-subunit epitope vaccine for the Indian population by targeting antigenic secretory proteins screened from the Leishmania donovani proteome. Out of 8014 proteins, 277 secretory proteins were screened for their cellular location and proteomic evidence. Through NCBI BlastP, unique fragments of the proteins were cropped, and their antigenicity was evaluated. B-cell, HTL and CTL epitopes as well as IFN-ɣ, IL-17, and IL-10 inducers were predicted, manually mapped to the fragments and common regions were tabulated forming a peptide ensemble. The ensemble was evaluated for Class I MHC immunogenicity and toxicity. Further, immunogenic peptides were randomly selected and used to design vaccine constructs. Eight vaccine constructs were generated by linking random peptides with GS linkers. Synthetic TLR-4 agonist, RS09 was used as an adjuvant and linked with the constructs using EAAK linkers. The predicted population coverage of the constructs was ∼99.8 % in the Indian as well as South Asian populations. The most antigenic, nontoxic, non-allergic construct was chosen for the prediction of secondary and tertiary structures. The 3D structures were refined and analyzed using Ramachandran plot and Z-scores. The construct was docked with TLR-4 receptor. Molecular dynamic simulation was performed to check for the stability of the docked complex. Comparative in silico immune simulation studies showed that the predicted construct elicited humoral and cell-mediated immunity in human host comparable to that elicited by Leish-F3, which is a promising vaccine candidate for human VL.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。