Heat stress inhibits proliferation, promotes growth, and induces apoptosis in cultured Lantang swine skeletal muscle satellite cells

热应激抑制培养的蓝塘猪骨骼肌卫星细胞增殖、促进生长并诱导细胞凋亡

阅读:7
作者:Chun-qi Gao, Yin-ling Zhao, Hai-chang Li, Wei-guo Sui, Hui-chao Yan, Xiu-qi Wang

Abstract

Proliferation suppression and apoptosis are the prominent characteristics induced by heat stress (HS) in cells, whereas the effects of HS on cell growth (mass accumulation) are unknown. In this study, Lantang swine (an indigenous breed of China) skeletal muscle satellite cells (SCs) were pre-cultured at 37 °C for 24 h. The HS group was subjected to HS at 41 °C, while the control group was maintained at 37 °C. Heat shock protein 70 (HSP70) expression and SC size are significantly increased (P<0.05) by HS, but cell proliferation is suppressed (P<0.05) and apoptosis is induced (P<0.05). HS led to a lower percentage of SCs in the G0/G1 phase (P<0.05) together with a higher percentage of SCs in the S phase (P<0.05). However, the percentage of SCs in the G2/M phase was decreased (P<0.05) at 48 h but then increased (P<0.05) at 72 h with HS. In addition, the phosphorylation ratios of protein kinase b (Akt), ribosomal protein S6 kinase (S6K), and ribosomal protein S6 were increased (P<0.05) by HS. Nevertheless, the phosphorylation ratios of the 4E binding protein 1 and the eukaryotic initiation factor-4E were indistinguishable (P>0.05) from those of the control group. The phosphorylation ratio of the mammalian target of rapamycin (mTOR) (Ser(2448)) increased (P<0.05) within 48 h, and apparent differences were abrogated at 72 h (P>0.05). Moreover, cleaved caspase-3 expression was increased at 72 h (P<0.05). These findings indicate that HS induces apoptosis and disrupts cell cycle distribution to decrease the number of cells. Additionally, HS can promote SC growth via an activated Akt/mTOR/S6K signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。