Silencing dentate newborn neurons alters excitatory/inhibitory balance and impairs behavioral inhibition and flexibility

沉默齿状新生神经元会改变兴奋/抑制平衡并损害行为抑制和灵活性

阅读:4
作者:Haowei Li, Risako Tamura, Daiki Hayashi, Hirotaka Asai, Junya Koga, Shota Ando, Sayumi Yokota, Jun Kaneko, Keisuke Sakurai, Akira Sumiyoshi, Tadashi Yamamoto, Keigo Hikishima, Kazumasa Z Tanaka, Thomas J McHugh, Tatsuhiro Hisatsune

Abstract

Adult neurogenesis confers the hippocampus with unparalleled neural plasticity, essential for intricate cognitive functions. The specific influence of sparse newborn neurons (NBNs) in modulating neural activities and subsequently steering behavior, however, remains obscure. Using an engineered NBN-tetanus toxin mouse model (NBN-TeTX), we noninvasively silenced NBNs, elucidating their crucial role in impulse inhibition and cognitive flexibility as evidenced through Morris water maze reversal learning and Go/Nogo task in operant learning. Task-based functional MRI (tb-fMRI) paired with operant learning revealed dorsal hippocampal hyperactivation during the Nogo task in male NBN-TeTX mice, suggesting that hippocampal hyperexcitability might underlie the observed behavioral deficits. Additionally, resting-state fMRI (rs-fMRI) exhibited enhanced functional connectivity between the dorsal and ventral dentate gyrus following NBN silencing. Further investigations into the activities of PV+ interneurons and mossy cells highlighted the indispensability of NBNs in maintaining the hippocampal excitation/inhibition balance. Our findings emphasize that the neural plasticity driven by NBNs extensively modulates the hippocampus, sculpting inhibitory control and cognitive flexibility.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。