Temperature Correction of Spectra to Improve Solute Concentration Monitoring by In Situ Ultraviolet and Mid-Infrared Spectrometries toward Isothermal Local Model Performance

通过光谱温度校正来改善原位紫外和中红外光谱法对溶质浓度的监测,以实现等温局部模型性能

阅读:7
作者:Magdalene W S Chong, Thomas McGlone, Ching Yee Chai, Naomi E B Briggs, Cameron J Brown, Francesca Perciballi, Jaclyn Dunn, Andrew J Parrott, Paul Dallin, John Andrews, Alison Nordon, Alastair J Florence

Abstract

Changes in temperature can significantly affect spectroscopic-based methods for in situ monitoring of processes. As varying temperature is inherent to many processes, associated temperature effects on spectra are unavoidable, which can hinder solute concentration determination. Ultraviolet (UV) and mid-infrared (IR) data were acquired for l-ascorbic acid (LAA) in MeCN/H2O (80:20 w/w) at different concentrations and temperatures. For both techniques, global partial least squares (PLS) models for prediction of LAA concentration constructed without preprocessing of the spectra required a high number of latent variables to account for the effects of temperature on the spectra (root mean square error of cross validation (RMSECV) of 0.18 and 0.16 g/100 g solvent, for UV and IR datasets, respectively). The PLS models constructed on the first derivative spectra required fewer latent variables, yielding variable results in accuracy (RMSECV of 0.23 and 0.06 g/100 g solvent, respectively). Corresponding isothermal local models constructed indicated improved model performance that required fewer latent variables in the absence of temperature effects (RMSECV of 0.01 and 0.04 g/100 g solvent, respectively). Temperature correction of the spectral data via loading space standardization (LSS) enabled the construction of global models using the same number of latent variables as the corresponding local model, which exhibited comparable model performance (RMSECV of 0.06 and 0.04 g/100 g solvent, respectively). The additional chemometric effort required for LSS is justified if prediction of solute concentration is required for in situ monitoring and control of cooling crystallization with an accuracy and precision approaching that attainable using an isothermal local model. However, the model performance with minimal preprocessing may be sufficient, for example, in the early phase development of a cooling crystallization process, where high accuracy is not always required. UV and IR spectrometries were used to determine solubility diagrams for LAA in MeCN/H2O (80:20 w/w), which were found to be accurate compared to those obtained using the traditional techniques of transmittance and gravimetric measurement. For both UV and IR spectrometries, solubility values obtained from models with LSS temperature correction were in better agreement with those determined gravimetrically. In this first example of the application of LSS to UV spectra, significant improvement in the predicted solute concentration is achieved with the additional chemometric effort. There is no extra experimental burden associated with the use of LSS if a structured approach is employed to acquire calibration data that account for both temperature and concentration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。