Loss of inversin decreases transepithelial sodium transport in murine renal cells

逆转录酶的缺失降低了小鼠肾细胞的跨上皮钠转运

阅读:5
作者:Nalini H Kulkarni, Rosamund C Smith, Bonnie L Blazer-Yost

Abstract

Type II nephronophthisis (NPHP2) is an autosomal recessive renal cystic disorder characterized by mutations in the inversin gene. Humans and mice with mutations in inversin have enlarged cystic kidneys that may be due to fluid accumulation resulting from altered ion transport. To address this, transepithelial ion transport was measured in shRNA-mediated inversin-depleted mouse cortical collecting duct (mCCD) cells. Loss of inversin decreased the basal ion flux in mCCD cells compared with controls. Depletion of inversin decreased vasopressin-induced Na+ absorption but did not alter Cl- secretion by mCCD cells. Addition of amiloride, a specific blocker of the epithelial sodium channel (ENaC), abolished basal ion transport in both inversin knockdown and control cells, indicating ENaC involvement. Transcript levels of ENaC β-subunit were reduced in inversin-knockdown cells consistent with decreased ENaC activity. Furthermore, Nedd4l (neural precursor cell expressed, developmentally downregulated 4 like), an upstream negative regulator of ENaC, was evaluated. The relative amount of the phosphorylated, inactive Nedd4l was decreased in inversin-depleted cells consistent with decreased ENaC activity. The protein levels of Sgk1 (serum and glucocorticoid-inducible kinase), which phosphorylates Nedd4l, remained unchanged although the transcript levels were increased in inversin-depleted cells. Interestingly, mRNA and protein levels of Crtc2 (Creb-regulated transcription coactivator) kinase, a positive regulator of Sgk1, were decreased in inversin-depleted cells. Together these results suggest that loss of inversin decreases Na+ transport via ENaC, mediated in part by transcriptional and posttranslational regulation of Crtc2/Sgk1/Nedd4l axis as a contributory mechanism for enlarged kidneys in NPHP2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。