Fully Reduced HMGB1-Containing Peptide-Based Polyurethane Scaffold with Minimal Functional Unit of Skin (MFUS) Enhances Large and Deep Wounded Skin Healing

完全还原的含 HMGB1 肽基聚氨酯支架与皮肤最小功能单元 (MFUS) 可增强大面积和深层伤口皮肤愈合

阅读:13
作者:Peng Chang, Shijie Li, Qian Sun, Kai Guo, Heran Wang, Song Li, Liming Zhang, Yongbao Xie, Xiongfei Zheng, Yunhui Liu

Abstract

A novel peptide-based polymer is developed by lysine-diisocyanate (LDI), glycerol (Gly), and fully reduced HMGB1 (frHMGB1). This frHMGB1-LDI-Gly polymer either forms sponge-like foam (scaffold) or a hydrogel or a film under different reaction conditions. It degrades into nontoxic lysine, glycerol, and frHMGB1. The hydrogel glues tissues together and the glued tissues have strong mechanical properties. The film and scaffold provide the suitable environment for enhancing cell proliferation by releasing frHMGB1. The scaffold carries 1 mm diameter of full-thickness rat skin-island as a minimal functional unit of skin (MFUS) to treat large full thickness skin wounds, and the hydrogel glues the MFUS and scaffold with skin edges together (MFUS+Scaffold group). The scaffold treated wounds (Scaffold group) heal much faster than the wounds either treated with MFUS (MFUS group) or without treatment (Wound group). The MFUS+Scaffold treated wound regenerates more functional full-thickness skin with more hair follicles and sweat glands, higher CD146 and α-smooth muscle actin levels, more blood vessels and collagen productions, and less scar tissues when compared to the other three groups. The results demonstrate that the combination of frHMGB1-LDI-Gly polymer with MFUS provides a new tissue engineering approach for large full-thickness skin wound healing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。