Sodium octanoate alleviates cardiac and cerebral injury after traumatic cardiac arrest in a porcine model

辛酸钠可减轻猪创伤性心脏骤停后的心脏和脑损伤

阅读:12
作者:Yao Lin, Qi Chen, Gongping Zhang, Lutao Xie, Xuelin Yang, Huiming Zhong, Jiefeng Xu, Mao Zhang

Conclusion

Our study's findings suggest that early infusion of sodium octanoate significantly alleviates post-resuscitation cardiac and cerebral injury in a porcine model of TCA, possibly through inhibition of cell apoptosis and GPX4-mediated ferroptosis. Therefore, sodium octanoate could be a potential therapeutic strategy for patients with TCA.

Methods

The study included a total of 22 male domestic pigs divided into three groups: Sham group (n = 7), TCA group (n = 7), and sodium octanoate (SO) group (n = 8). Hemorrhage was initiated via the right femoral artery by a blood pump at a rate of 2 ml·kg-1·min-1 to establish TCA model. The Sham group underwent only endotracheal intubation and arteriovenous catheterization, without experiencing the blood loss/cardiac arrest/resuscitation model. At 5 min after resuscitation, the SO group received a continuous sodium octanoate infusion while the TCA group received the same volume of saline. General indicators were monitored, and blood samples were collected at baseline and at different time points after resuscitation. At 24 h after resuscitation, pigs were sacrificed, and heart and brain were obtained for cell apoptosis detection, iron deposition staining, oxidative stress detection, and the expression of ferroptosis-related proteins (ACSL4 and GPX4).

Results

Sodium octanoate significantly improved mean arterial pressure, cardiac output and ejection fraction induced by TCA. Serum biomarkers of cardiac and cerebral injury were found to increase at all time points after resuscitation, while sodium octanoate significantly reduced their levels. The apoptosis rates of cardiomyocytes and cerebral cortex cells in the SO group were significantly lower than in the TCA group, along with a reduced area of iron deposition staining. The sodium octanoate also reduced oxidative stress and down-regulated ferroptosis which was indicated by protein level alteration of ACSL4 and GPX4.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。