Genome-wide survey reveals dynamic widespread tissue-specific changes in DNA methylation during development

全基因组调查揭示了发育过程中 DNA 甲基化的动态广泛组织特异性变化

阅读:5
作者:Ping Liang, Fei Song, Srimoyee Ghosh, Evan Morien, Maochun Qin, Saleh Mahmood, Kyoko Fujiwara, Jun Igarashi, Hiroki Nagase, William A Held

Background

Changes in DNA methylation in the mammalian genome during development are frequent events and play major roles regulating gene expression and other developmental processes. It is necessary to identify these events so that we may understand how these changes affect normal development and how aberrant changes may impact disease.

Conclusions

Our data suggests the vast majority of unique sequence DNA methylation has tissue specificity, that demethylation has a prominent role in tissue differentiation, and that DNA methylation has regulatory roles in alternative promoter selection and in non-promoter regions. Overall, our studies indicate changes in DNA methylation during development are a dynamic, widespread, and tissue-specific process involving both DNA methylation and demethylation.

Results

In this study Methylated DNA ImmunoPrecipitation (MeDIP) was used in conjunction with a NimbleGen promoter plus CpG island (CpGi) array to identify Tissue and Developmental Stage specific Differentially Methylated DNA Regions (T-DMRs and DS-DMRs) on a genome-wide basis. Four tissues (brain, heart, liver, and testis) from C57BL/6J mice were analyzed at three developmental stages (15 day embryo, E15; new born, NB; 12 week adult, AD). Almost 5,000 adult T-DMRs and 10,000 DS-DMRs were identified. Surprisingly, almost all DS-DMRs were tissue specific (i.e. methylated in at least one tissue and unmethylated in one or more tissues). In addition our results indicate that many DS-DMRs are methylated at early development stages (E15 and NB) but are unmethylated in adult. There is a very strong bias for testis specific methylation in non-CpGi promoter regions (94%). Although the majority of T-DMRs and DS-DMRs tended to be in non-CpGi promoter regions, a relatively large number were also located in CpGi in promoter, intragenic and intergenic regions (>15% of the 15,979 CpGi on the array). Conclusions: Our data suggests the vast majority of unique sequence DNA methylation has tissue specificity, that demethylation has a prominent role in tissue differentiation, and that DNA methylation has regulatory roles in alternative promoter selection and in non-promoter regions. Overall, our studies indicate changes in DNA methylation during development are a dynamic, widespread, and tissue-specific process involving both DNA methylation and demethylation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。