Three-minute method for amino acid analysis by UHPLC and high-resolution quadrupole orbitrap mass spectrometry

通过 UHPLC 和高分辨率四极杆轨道阱质谱进行三分钟氨基酸分析

阅读:7
作者:Travis Nemkov, Angelo D'Alessandro, Kirk C Hansen

Abstract

Amino acid analysis is a powerful bioanalytical technique for many biomedical research endeavors, including cancer, emergency medicine, nutrition and neuroscience research. In the present study, we present a 3 min analytical method for underivatized amino acid analysis that employs ultra high-performance liquid chromatography and high-resolution quadrupole orbitrap mass spectrometry. This method has demonstrated linearity (mM to nM range), reproducibility (intra-day <5 %, inter-day <20 %), sensitivity (low fmol) and selectivity. Here, we illustrate the rapidity and accuracy of the method through comparison with conventional liquid chromatography-mass spectrometry methods. We further demonstrate the robustness and sensitivity of this method on a diverse range of biological matrices. Using this method we were able to selectively discriminate murine pancreatic cancer cells with and without knocked down expression of hypoxia-inducible factor 1α; plasma, lymph and bronchioalveolar lavage fluid samples from control versus hemorrhaged rats; and muscle tissue samples harvested from rats subjected to both low-fat and high-fat diets. Furthermore, we were able to exploit the sensitivity of the method to detect and quantify the release of glutamate from sparsely isolated murine taste buds. Spiked in light or heavy standards ((13)C6-arginine, (13)C6-lysine, (13)C 5 (15) N2-glutamine) or xenometabolites (5-fluorouracil) were used to determine coefficients of variation, confirm linearity of relative quantitation in four different matrices, and overcome matrix effects for absolute quantitation. The presented method enables high-throughput analysis of low-abundance samples requiring only one percent of the material extracted from 100,000 cells, 10 µl of biological fluid, or 2 mg of muscle tissue.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。