Ultrastrong and multifunctional aerogels with hyperconnective network of composite polymeric nanofibers

具有复合聚合物纳米纤维超连接网络的超强多功能气凝胶

阅读:9
作者:Huimin He #, Xi Wei #, Bin Yang, Hongzhen Liu, Mingze Sun, Yanran Li, Aixin Yan, Chuyang Y Tang, Yuan Lin, Lizhi Xu

Abstract

Three-dimensional (3D) microfibrillar network represents an important structural design for various natural tissues and synthetic aerogels. Despite extensive efforts, achieving high mechanical properties for synthetic 3D microfibrillar networks remains challenging. Here, we report ultrastrong polymeric aerogels involving self-assembled 3D networks of aramid nanofiber composites. The interactions between the nanoscale constituents lead to assembled networks with high nodal connectivity and strong crosslinking between fibrils. As revealed by theoretical simulations of 3D networks, these features at fibrillar joints may lead to an enhancement of macroscopic mechanical properties by orders of magnitude even with a constant level of solid content. Indeed, the polymeric aerogels achieved both high specific tensile modulus of ~625.3 MPa cm3 g-1 and fracture energy of ~4700 J m-2, which are advantageous for diverse structural applications. Furthermore, their simple processing techniques allow fabrication into various functional devices, such as wearable electronics, thermal stealth, and filtration membranes. The mechanistic insights and manufacturability provided by these robust microfibrillar aerogels may create further opportunities for materials design and technological innovation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。