Dual actions of a novel bifunctional compound to lower glucose in mice with diet-induced insulin resistance

新型双功能化合物的双重作用可降低饮食引起的胰岛素抵抗小鼠的血糖。

阅读:5
作者:Katherine Chen, Alice Jih, Sarah T Kavaler, William S Lagakos, Dayoung Oh, Steven M Watkins, Jane J Kim

Abstract

Docosahexaenoic acid (DHA 22:6n-3) and salicylate are both known to exert anti-inflammatory effects. This study investigated the effects of a novel bifunctional drug compound consisting of DHA and salicylate linked together by a small molecule that is stable in plasma but hydrolyzed in the cytoplasm. The components of the bifunctional compound acted synergistically to reduce inflammation mediated via nuclear factor κB in cultured macrophages. Notably, oral administration of the bifunctional compound acted in two distinct ways to mitigate hyperglycemia in high-fat diet-induced insulin resistance. In mice with diet-induced obesity, the compound lowered blood glucose by reducing hepatic insulin resistance. It also had an immediate glucose-lowering effect that was secondary to enhanced glucagon-like peptide-1 (GLP-1) secretion and abrogated by the administration of exendin(9-39), a GLP-1 receptor antagonist. These results suggest that the bifunctional compound could be an effective treatment for individuals with type 2 diabetes and insulin resistance. This strategy could also be employed in other disease conditions characterized by chronic inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。