NADPH oxidase-derived production of reactive oxygen species is involved in learning and memory impairments in 16-month-old female rats

NADPH 氧化酶产生的活性氧与 16 个月大雌性大鼠的学习和记忆障碍有关

阅读:5
作者:Hongwei Kan, Wen Hu, Yuchan Wang, Wangyang Wu, Yanyan Yin, Yan Liang, Chunyan Wang, Dake Huang, Weizu Li

Abstract

Women undergoing the natural menopause can experience progressive cognitive dysfunction, particularly in the form of memory impairment. However, the mechanisms underlying memory impairments in the menopause remain to be elucidated. There is increasing evidence that oxidative damage caused by excessive reactive oxygen species (ROS) production may correlate with age‑associated cognitive impairment. The nicotinamide adenosine dinucleotide phosphate oxidase (NOX) family is important in the generation of ROS in the brain. It has been hypothesized that the accumulation of ROS, derived from NOX, may be involved in menopause‑associated learning and memory impairments. The present study investigated whether NOX‑derived ROS generation affected the learning and memory ability in 3‑month and 16‑month‑old female rats. The results of a morris water maze assessment revealed that there were significant learning and memory impairments in the 16‑month‑old female rats. Furthermore, the activity of superoxide dismutase (SOD), level of malondialdehyde (MDA), production of ROS and expression levels of NOX2, p47phox, Ras‑related C3 botulinum toxin substrate 1 (RAC1) and protein kinase C α (PKCα) were investigated in the cortex and hippocampus of 3‑month and 16‑month old female rats. The results demonstrated that the activity of SOD was significantly decreased, whereas the levels of MDA, production of ROS and expression levels of NOX2, p47phox, RAC1 and PKCα were significantly increased in the 16‑month old female rats. These results suggested that NOX‑mediated oxidative stress may be important in menopause‑associated learning and memory impairments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。