Altered meningeal immunity contributing to the autism-like behavior of BTBR T + Itpr3 tf /J mice

脑膜免疫改变导致 BTBR T + Itpr3 tf /J 小鼠出现自闭症样行为

阅读:6
作者:Mohammad Nizam Uddin, Kevin Manley, David A Lawrence

Abstract

Autism spectrum disorder (ASD) is a complicated neurodevelopmental disorder, which is categorized by deficiency of social contact and communication, and stereotyped forms of performance. Meningeal immunity conditions the immune reflection and immune defense in the meningeal area involving meningeal lymphatic organization, glymphatic structure, immune cells, and cytokines. The development of meningeal immunity dysfunction might be the leading cause for many neural diseases including ASD. The inbred mouse strain BTBRT + Itpr3tf/J (BTBR) shows multiple ASD-like behavioral phenotypes, thus making this strain a widely used animal model for ASD. In our previous study, we reported an altered peripheral immune profile in BTBR mice. Herein, we are investigating immunological and neural interactions associated with the aberrant behavior of BTBR mice. BTBR mice have an increased level of immune cell deposition in the meninges along with a higher level of CD4+ T cells expressing CD25 and of B and myeloid cells expressing more MHCII than C57BL/6 (B6) mice, which have normal behaviors. BTBR mice also have higher levels of autoantibodies to dsDNA, Aquaporin-4, NMDAR1, Pentraxin/SAP and Caspr2 than B6 mice, which may affect neural functions. Interestingly, the T regulatory (Treg) cell population and their function was significantly reduced in the meninges and brain draining lymph nodes, which may explain the increased level of activated B and T cells in the meninges of BTBR mice. A low level of Treg cells, less IL-10 production by Treg, and activated T and B cells in meninges together with higher autoantibody levels might contribute to the development of autism-like behavior through neuroinflammation, which is known to be increased in BTBR mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。