NLRX1 Prevents M2 Macrophage Polarization and Excessive Renal Fibrosis in Chronic Obstructive Nephropathy

NLRX1 可预防慢性阻塞性肾病中的 M2 巨噬细胞极化和过度肾纤维化

阅读:4
作者:Ye Liu, Lotte Kors, Loes M Butter, Geurt Stokman, Nike Claessen, Coert J Zuurbier, Stephen E Girardin, Jaklien C Leemans, Sandrine Florquin, Alessandra Tammaro

Background

Chronic kidney disease often leads to kidney dysfunction due to renal fibrosis, regardless of the initial cause of kidney damage. Macrophages are crucial players in the progression of renal fibrosis as they stimulate inflammation, activate fibroblasts, and contribute to extracellular matrix deposition, influenced by their metabolic state. Nucleotide-binding domain and LRR-containing protein X (NLRX1) is an innate immune receptor independent of inflammasomes and is found in mitochondria, and it plays a role in immune responses and cell metabolism. The specific impact of NLRX1 on macrophages and its involvement in renal fibrosis is not fully understood.

Conclusions

Our findings highlight the unique role of NLRX1 in regulating the metabolism and function of macrophages, ultimately protecting against excessive renal injury and fibrosis in UUO.

Methods

To explore the specific role of NLRX1 in macrophages, bone-marrow-derived macrophages (BMDMs) extracted from wild-type (WT) and NLRX1 knockout (KO) mice were stimulated with pro-inflammatory and pro-fibrotic factors to induce M1 and M2 polarization in vitro. The expression levels of macrophage polarization markers (Nos2, Mgl1, Arg1, and Mrc1), as well as the secretion of transforming growth factor β (TGFβ), were measured using RT-PCR and ELISA. Seahorse-based bioenergetics analysis was used to assess mitochondrial respiration in naïve and polarized BMDMs obtained from WT and NLRX1 KO mice. In vivo, WT and NLRX1 KO mice were subjected to unilateral ureter obstruction (UUO) surgery to induce renal fibrosis. Kidney injury, macrophage phenotypic profile, and fibrosis markers were assessed using RT-PCR. Histological staining (PASD and Sirius red) was used to quantify kidney injury and fibrosis.

Results

Compared to the WT group, an increased gene expression of M2 markers-including Mgl1 and Mrc1-and enhanced TGFβ secretion were found in naïve BMDMs extracted from NLRX1 KO mice, indicating functional polarization towards the pro-fibrotic M2 subtype. NLRX1 KO naïve macrophages also showed a significantly enhanced oxygen consumption rate compared to WT cells and increased basal respiration and maximal respiration capacities that equal the level of M2-polarized macrophages. In vivo, we found that NLRX1 KO mice presented enhanced M2 polarization markers together with enhanced tubular injury and fibrosis demonstrated by augmented TGFβ levels, fibronectin, and collagen accumulation. Conclusions: Our findings highlight the unique role of NLRX1 in regulating the metabolism and function of macrophages, ultimately protecting against excessive renal injury and fibrosis in UUO.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。