Gadolinium-Labelled Cell Scaffolds to Follow-up Cell Transplantation by Magnetic Resonance Imaging

利用磁共振成像对钆标记细胞支架进行细胞移植跟踪

阅读:6
作者:Valeria Catanzaro, Giuseppe Digilio, Federico Capuana, Sergio Padovan, Juan C Cutrin, Fabio Carniato, Stefano Porta, Cristina Grange, Nenad Filipović, Magdalena Stevanović

Abstract

Cell scaffolds are often used in cell transplantation as they provide a solid structural support to implanted cells and can be bioengineered to mimic the native extracellular matrix. Gadolinium fluoride nanoparticles (Gd-NPs) as a contrast agent for Magnetic Resonance Imaging (MRI) were incorporated into poly(lactide-co-glycolide)/chitosan scaffolds to obtain Imaging Labelled Cell Scaffolds (ILCSs), having the shape of hollow spherical/ellipsoidal particles (200-600 μm diameter and 50-80 μm shell thickness). While Gd-NPs incorporated into microparticles do not provide any contrast enhancement in T1-weighted (T1w) MR images, ILCSs can release Gd-NPs in a controlled manner, thus activating MRI contrast. ILCSs seeded with human mesenchymal stromal cells (hMSCs) were xenografted subcutaneously into either immunocompromised and immunocompetent mice without any immunosuppressant treatments, and the transplants were followed-up in vivo by MRI for 18 days. Immunocompromised mice showed a progressive activation of MRI contrast within the implants due to the release of Gd-NPs in the extracellular matrix. Instead, immunocompetent mice showed poor activation of MRI contrast due to the encapsulation of ILCSs within fibrotic capsules and to the scavenging of released Gd-NPs by phagocytic cells. In conclusion, the MRI follow-up of cell xenografts can report the host cell response to the xenograft. However, it does not strictly report on the viability of transplanted hMSCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。