On the role of corticosterone in behavioral disorders, microbiota composition alteration and neuroimmune response in adult male mice subjected to maternal separation stress

皮质酮在母子分离应激成年雄性小鼠行为障碍、微生物组成改变和神经免疫反应中的作用

阅读:4
作者:Hossein Amini-Khoei, Elaheh Haghani-Samani, Masoumeh Beigi, Amin Soltani, Gholam Reza Mobini, Shima Balali-Dehkordi, Arvin Haj-Mirzaian, Mahmoud Rafieian-Kopaei, Akram Alizadeh, Mohammad Reza Hojjati, Majid Validi

Abstract

Experiencing psychosocial adversities in early life such as maternal separation (MS) increases the risk of psychiatric disorders. Immune-inflammatory responses have imperative roles in the pathophysiology of psychiatric disorders. MS relatively changes the composition of intestinal microbiota leading to an overactivation of the hypothalamic-pituitary-adrenal (HPA) axis, and subsequently increases the corticosterone level. In this study, we aimed to evaluate the role of corticosterone in behavioral changes and microbiota modifications in a mouse model of MS afflicted neuroinflammatory response in the hippocampus. For this purpose, 180 min of MS stress was applied to mice at postnatal day (PND) 2-14 followed by behavioral tests including forced swimming test (FST), splash test, open field test (OFT) and elevated plus maze (EPM) at PND 50-52. For evaluating the role of corticosterone, mice were subjected to adrenalectomy. Using real-time RT-PCR, the expression of inflammatory genes was determined in the hippocampus and colon tissues. We found that MS provoked depressive- and anxiety-like behaviors in adult male mice. In addition, MS was able to active a neuroimmune response in the hippocampus, motivate inflammation and histopathologic changes in the colon tissue and modify the composition of gut microbiota as well. Interestingly, our findings showed that adrenalectomy (decline in the corticosterone level), could modulate the above-mentioned negative effects of MS. In conclusion, our results demonstrated that overactivation of HPA axis and the subsequent increased level of corticosterone could act, possibly, as the deleterious effects of MS on behavior, microbiota composition changes and activation of neuroimmune response.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。