MicroRNA dynamics during hibernation of the Australian central bearded dragon (Pogona vitticeps)

澳大利亚中部鬃狮蜥(Pogona vitticeps)冬眠期间的 microRNA 动态

阅读:6
作者:Alexander Capraro, Denis O'Meally, Shafagh A Waters, Hardip R Patel, Arthur Georges, Paul D Waters

Abstract

Hibernation is a physiological state employed by many animals that are exposed to limited food and adverse winter conditions. Controlling tissue-specific and organism wide changes in metabolism and cellular function requires precise regulation of gene expression, including by microRNAs (miRNAs). Here we profile miRNA expression in the central bearded dragon (Pogona vitticeps) using small RNA sequencing of brain, heart, and skeletal muscle from individuals in late hibernation and four days post-arousal. A total of 1295 miRNAs were identified in the central bearded dragon genome; 664 of which were novel to central bearded dragon. We identified differentially expressed miRNAs (DEmiRs) in all tissues and correlated mRNA expression with known and predicted target mRNAs. Functional analysis of DEmiR targets revealed an enrichment of differentially expressed mRNA targets involved in metabolic processes. However, we failed to reveal biologically relevant tissue-specific processes subjected to miRNA-mediated regulation in heart and skeletal muscle. In brain, neuroprotective pathways were identified as potential targets regulated by miRNAs. Our data suggests that miRNAs are necessary for modulating the shift in cellular metabolism during hibernation and regulating neuroprotection in the brain. This study is the first of its kind in a hibernating reptile and provides key insight into this ephemeral phenotype.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。