Comparative biochemical characterization of three exolytic oligoalginate lyases from Vibrio splendidus reveals complementary substrate scope, temperature, and pH adaptations

三种来自弧菌的外溶性寡藻酸盐裂解酶的比较生化表征揭示了互补的底物范围、温度和 pH 适应性

阅读:4
作者:Sujit Sadashiv Jagtap, Jan-Hendrik Hehemann, Martin F Polz, Jung-Kul Lee, Huimin Zhao

Abstract

Marine microbes use alginate lyases to degrade and catabolize alginate, a major cell wall matrix polysaccharide of brown seaweeds. Microbes frequently contain multiple, apparently redundant alginate lyases, raising the question of whether these enzymes have complementary functions. We report here on the molecular cloning and functional characterization of three exo-type oligoalginate lyases (OalA, OalB, and OalC) from Vibrio splendidus 12B01 (12B01), a marine bacterioplankton species. OalA was most active at 16°C, had a pH optimum of 6.5, and displayed activities toward poly-β-d-mannuronate [poly(M)] and poly-α-l-guluronate [poly(G)], indicating that it is a bifunctional enzyme. OalB and OalC were most active at 30 and 35°C, had pH optima of 7.0 and 7.5, and degraded poly(M·G) and poly(M), respectively. Detailed kinetic analyses of oligoalginate lyases with poly(G), poly(M), and poly(M·G) and sodium alginate as substrates demonstrated that OalA and OalC preferred poly(M), whereas OalB preferred poly(M·G). The catalytic efficiency (kcat/Km) of OalA against poly(M) increased with decreasing size of the substrate. OalA showed kcat/Km from 2,130 mg(-1) ml s(-1) for the trisaccharide to 224 mg(-1) ml s(-1) for larger oligomers of ∼50 residues, and 50.5 mg(-1) ml s(-1) for high-molecular-weight alginate. Although OalA was most active on the trisaccharide, OalB and OalC preferred dimers. Taken together, our results indicate that these three Oals have complementary substrate scopes and temperature and pH adaptations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。