Exploring the molecular mechanisms of the involvement of GZMB-Caspase-3-GSDME pathway in the progression of rheumatoid arthritis

GZMB-Caspase-3-GSDME通路参与类风湿关节炎进展的分子机制探讨

阅读:4
作者:Yue Zhang, Xingbo Cai, Bin Wang, Bihuan Zhang, Yongqing Xu

Abstract

Rheumatoid arthritis (RA) is an autoimmune disease with an unclear pathogenesis. Granzyme B (GZMB) has been reported as a potential therapeutic target for RA treatment, but its mechanism remains unclear. This study aimed to explore the molecular mechanism of the GZMB-Caspase-3-GSDME pathway in the progression of RA. An SD rat model of RA was constructed, and Western blot analysis was used to verify the high expression of the GZMB gene in RA rats. Functional validation was then performed on two common RA cells, HFLS-RA cells and MH7A cells, by inhibiting the GZMB gene with the GZMB siRNA virus. Cell proliferation function was measured by CCK8 and EDU assays; cell pyroptosis markers were detected by the LDH assay; inflammation factor levels were measured by ELISA; and the expression of GZMB and pathway-related genes and proteins was measured by Western blot. After GZMB silencing, cell proliferation was decreased compared to the control group, and the inflammation factors IL-1b and IL-18, as well as the pyroptosis markers LDH, IL-1b, and IL-18, were all reduced. The GZMB-related proteins GZMB, caspase-3, and Gasdermin E (GSDME) were also decreased. Therefore, GZMB silencing reduces pyroptosis by inhibiting caspase-3 and Gasdermin E decomposition. In summary, GZMB silencing inhibits the activation of caspase-3 and Gasdermin E, thereby delaying inflammation in RA. The GZMB gene may be a potential therapeutic target for RA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。