Background
Osteoporosis (OP) is a major problem that increases the mortality and disability rate worldwide. With an increase in the aging population, OP has become a major public threat to human health. Searching for effective and suitable targets for drug treatment in OP has become an urgent need. Objectives: Osteoporosis is a metabolic bone disease characterized by reduced bone mass and density as well as micro-architectural deterioration. Icariin is a flavonoid extracted from plants of the genus Epimedium and has been shown to exert potential anti-OP activity. The present study was designed to observe the effect of icariin on OP and to clarify the underlying mechanisms in ovariectomized (OVX) rats. Material and
Conclusions
Icariin reversed the significant upregulation of the serine/threonine protein kinase (Akt), mammalian target of rapamycin (mTOR) and unc-51-like autophagy activating kinase 1 (ULK1) at Ser757, and the downregulation of p-AMP-activated protein kinase (p-AMPK) and ULK1 phosphorylated at Ser555 in the OVX rats, suggesting that the mechanism of icariin action in OP treatment involves the activation and suppression of the AMPK/ULK1 and AKT/mTOR/ULK1 autophagy pathways, respectively.
Material and methods
Hematoxylin and eosin (H&E) staining, von Kossa staining and micro-computed tomography (micro-CT) confirmed significant bone loss in the OVX group. Protein expression level was detected with western blot analysis.
Methods
Hematoxylin and eosin (H&E) staining, von Kossa staining and micro-computed tomography (micro-CT) confirmed significant bone loss in the OVX group. Protein expression level was detected with western blot analysis.
Results
Icariin reversed a trend of increased bone turnover by reducing serum alkaline phosphatase (ALP), procollagen type I N-terminal propeptide (PINP), tartrate-resistant acid phosphatase isoform 5b (TRACP-5b), and C-telopeptide of type I collagen (CTX-I). Furthermore, icariin decreased sequestosome 1 (p62) and increased microtubule-associated protein 1 light chain 3II/microtubule-associated protein 1 light chain 3I (LC3II/LC3I), autophagy-related protein 7 (Atg7), and Beclin 1 in the femur of OVX rats, improving the indicators of impaired autophagy in OP. Conclusions: Icariin reversed the significant upregulation of the serine/threonine protein kinase (Akt), mammalian target of rapamycin (mTOR) and unc-51-like autophagy activating kinase 1 (ULK1) at Ser757, and the downregulation of p-AMP-activated protein kinase (p-AMPK) and ULK1 phosphorylated at Ser555 in the OVX rats, suggesting that the mechanism of icariin action in OP treatment involves the activation and suppression of the AMPK/ULK1 and AKT/mTOR/ULK1 autophagy pathways, respectively.
