Protective effect of low-intensity pulsed ultrasound on immune checkpoint inhibitor-related myocarditis via fine-tuning CD4+ T-cell differentiation

低强度脉冲超声通过微调 CD4+ T 细胞分化对免疫检查点抑制剂相关心肌炎的保护作用

阅读:8
作者:Shuai Fu, Zihong Guo, Xiangli Xu, Yifei Li, Stephen Choi, Peng Zhao, Wenqian Shen, Fei Gao, Chao Wang, Shuang Chen, You Li, Jiawei Tian #, Ping Sun #

Conclusion

LIPUS therapy was shown to reduce ICI-related myocarditis inflammatory damage and improve cardiac function, representing an exciting finding for irAEs treatment.

Methods

An in vivo model of ICI-related myocarditis was obtained by intraperitonially injecting male A/J mice with an InVivoPlus anti-mouse PD-1 inhibitor. LIPUS treatment was performed via an ultrasound-guided application to the heart via the chest wall. The echocardiographic parameters were observed and cardiac function was assessed using an in vivo imaging system. The expression of core components of the HIPPO pathway was analyzed via western blotting.

Purpose

Immune checkpoint inhibitors (ICIs) have transformed traditional cancer treatments. Specifically, ICI-related myocarditis is an immune-related adverse event (irAE) with high mortality. ICIs activate CD4+ T-lymphocyte reprogramming, causing an imbalance between Th17 and Treg cell differentiation, ultimately leading to myocardial inflammatory damage. Low-intensity pulsed ultrasound (LIPUS) can limit inflammatory responses, with positive therapeutic effects across various cardiovascular inflammatory diseases; however, its role in the pathogenesis of ICI-related myocarditis and CD4+ T-cell dysfunction remains unclear. Accordingly, this study investigated whether LIPUS can alleviate ICI-related myocarditis inflammatory damage and, if so, aimed to elucidate the beneficial effects of LIPUS and its underlying molecular mechanisms.

Results

LIPUS treatment reduced cardiac immune responses and inflammatory cardiac injury. Further, LIPUS treatment alleviated the inflammatory response in mice with ICI-related myocarditis. Mechanistically, in the HIPPO pathway, the activation of Mst1-TAZ axis improved autoimmune inflammation by altering the interaction between the transcription factors FOXP3 and RORγt and regulating the differentiation of Treg and Th17 cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。