Dietary Restriction Suppresses Steatosis-Associated Hepatic Tumorigenesis in Hepatitis C Virus Core Gene Transgenic Mice

饮食限制可抑制丙型肝炎病毒核心基因转基因小鼠的脂肪变性相关肝肿瘤发生

阅读:11
作者:Fangping Jia, Pan Diao, Xiaojing Wang, Xiao Hu, Takefumi Kimura, Makoto Nakamuta, Ibuki Nakamura, Saki Shirotori, Yoshiko Sato, Kyoji Moriya, Kazuhiko Koike, Frank J Gonzalez, Jun Nakayama, Toshifumi Aoyama, Naoki Tanaka

Aims

Dietary restriction (DR) is a preventive strategy for obesity, metabolic syndrome, cardiovascular disease, and diabetes. Although an interconnection between obesity, metabolic syndrome, fatty liver, and hepatocellular carcinoma has been documented, the mechanism and impact of DR on steatosis-derived hepatocarcinogenesis are not fully understood. This study aimed to evaluate whether DR can prevent hepatic tumorigenesis.

Background and aims

Dietary restriction (DR) is a preventive strategy for obesity, metabolic syndrome, cardiovascular disease, and diabetes. Although an interconnection between obesity, metabolic syndrome, fatty liver, and hepatocellular carcinoma has been documented, the mechanism and impact of DR on steatosis-derived hepatocarcinogenesis are not fully understood. This study aimed to evaluate whether DR can prevent hepatic tumorigenesis.

Conclusion

DR suppressed steatosis-associated hepatic tumorigenesis in HCVcpTg mice, mainly due to attenuation of pathways involved in inflammation, cellular stress, cell proliferation, insulin signaling, and senescence. These findings support the notion that persistent 30% reduction of daily food intake is beneficial for preventing steatosis-associated hepatocarcinogenesis caused by HCV core protein.

Methods

Male hepatitis C virus core gene transgenic (HCVcpTg) mice that develop spontaneous age-dependent insulin resistance, hepatic steatosis, and ensuing liver tumor development without apparent hepatic fibrosis, were fed with either a control diet ad libitum (control group) or 70% of the same control diet (DR group) for 15 months, and liver phenotypes were investigated.

Results

DR significantly reduced the number and volume of liver tumors. DR attenuated hepatic oxidative and endoplasmic reticulum stress and markedly suppressed nuclear factor-κB, signal transducer and activator of transcription 3 (STAT3) and STAT5, and phosphorylation of extracellular signal-regulated kinase, leading to downregulation of several pro-oncogenic mediators, such as cyclin D1. Serum insulin and insulin-like growth factor 1 levels, as well as hepatic expression of insulin receptor substrate 1/2, phosphatidylinositol-3 kinase, and serine/threonine-protein kinase AKT, were downregulated by DR. A transcriptome analysis revealed that STAT3 signaling and lipogenesis were the most suppressed hepatocarcinogenic pathways affected by DR. Additionally, DR stimulated autophagy and p62/sequestosome 1 degradation, enhanced phosphorylation of AMP-activated protein kinase α, increased fibroblast growth factor 21 expression, and attenuated expression of senescence-associated secretory phenotypes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。