Expression changes of microRNA-1 and its targets Connexin 43 and brain-derived neurotrophic factor in the peripheral nervous system of chronic neuropathic rats

慢性神经病大鼠周围神经系统microRNA-1及其靶基因Connexin 43和脑源性神经营养因子的表达变化

阅读:5
作者:Elena Neumann, Henning Hermanns, Franziska Barthel, Robert Werdehausen, Timo Brandenburger

Background

MicroRNAs (miRNAs) are involved in the neuroplastic changes which induce and maintain neuropathic pain. However, it is unknown whether nerve injury leads to altered miRNA expression and modulation of pain relevant target gene expression within peripheral nerves. In the present study, expression profiles of miR-1 and the pain-relevant targets, brain derived neurotrophic factor (BDNF) and Connexin 43 (Cx43), were studied in peripheral neuropathic pain, which was induced by chronic constriction injury (CCI) of the sciatic nerve in rats. The expression of miR-1 was investigated in the sciatic nerve, dorsal root ganglion (DRG) and the ipsilateral spinal cord by qPCR. Changes of BDNF and Cx43 expression patterns were studied using qPCR, Western blot analysis, ELISA and immunohistochemistry.

Conclusions

This study demonstrates that CCI leads to a regulation of miRNAs (miR-1) in the peripheral nervous system. This regulation is associated with alterations in the expression and localization of the miR-1 dependent pain-relevant proteins BDNF and Cx43. Further studies will have to explore the function of miRNAs in the context of neuropathic pain in the peripheral nervous system.

Results

In sciatic nerves of naïve rats, expression levels of miR-1 were more than twice as high as in DRG and spinal cord. In neuropathic rats, CCI lead to a time-dependent downregulation of miR-1 in the sciatic nerve but not in DRG and spinal cord. Likewise, protein expression of the miR-1 targets BDNF and Cx43 was upregulated in the sciatic nerve and DRG after CCI. Immunohistochemical staining revealed an endoneural abundancy of Cx43 in injured sciatic nerves which was absent after Sham operation. Conclusions: This study demonstrates that CCI leads to a regulation of miRNAs (miR-1) in the peripheral nervous system. This regulation is associated with alterations in the expression and localization of the miR-1 dependent pain-relevant proteins BDNF and Cx43. Further studies will have to explore the function of miRNAs in the context of neuropathic pain in the peripheral nervous system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。