Defining the substrate specificity determinants recognized by the active site of C-terminal Src kinase-homologous kinase (CHK) and identification of β-synuclein as a potential CHK physiological substrate

定义 C 端 Src 激酶同源激酶 (CHK) 活性位点识别的底物特异性决定因素,并鉴定 β-突触核蛋白为潜在的 CHK 生理底物

阅读:5
作者:Kim K Ia, Grace R Jeschke, Yang Deng, Mohd Aizuddin Kamaruddin, Nicholas A Williamson, Denis B Scanlon, Janetta G Culvenor, Mohammed Iqbal Hossain, Anthony W Purcell, Sheng Liu, Hong-Jian Zhu, Bruno Catimel, Benjamin E Turk, Heung-Chin Cheng

Abstract

C-Terminal Src kinase-homologous kinase (CHK) exerts its tumor suppressor function by phosphorylating the C-terminal regulatory tyrosine of the Src-family kinases (SFKs). The phosphorylation suppresses their activity and oncogenic action. In addition to phosphorylating SFKs, CHK also performs non-SFK-related functions by phosphorylating other cellular protein substrates. To define these non-SFK-related functions of CHK, we used the "kinase substrate tracking and elucidation" method to search for its potential physiological substrates in rat brain cytosol. Our search revealed β-synuclein as a potential CHK substrate, and Y127 in β-synuclein as the preferential phosphorylation site. Using peptides derived from β-synuclein and positional scanning combinatorial peptide library screening, we defined the optimal substrate phosphorylation sequence recognized by the CHK active site to be E-x-[Φ/E/D]-Y-Φ-x-Φ, where Φ and x represent hydrophobic residues and any residue, respectively. Besides β-synuclein, cellular proteins containing motifs resembling this sequence are potential CHK substrates. Intriguingly, the CHK-optimal substrate phosphorylation sequence bears little resemblance to the C-terminal tail sequence of SFKs, indicating that interactions between the CHK active site and the local determinants near the C-terminal regulatory tyrosine of SFKs play only a minor role in governing specific phosphorylation of SFKs by CHK. Our results imply that recognition of SFKs by CHK is mainly governed by interactions between motifs located distally from the active site of CHK and determinants spatially separate from the C-terminal regulatory tyrosine in SFKs. Thus, besides assisting in the identification of potential CHK physiological substrates, our findings shed new light on how CHK recognizes SFKs and other protein substrates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。