Conformational & spectroscopic characterization, charge analysis and molecular docking profiles of chromone-3-carboxylic acid using a quantum hybrid computational method

使用量子混合计算方法对色酮-3-羧酸进行构象和光谱表征、电荷分析和分子对接概况

阅读:5
作者:K Jayasheela, P B Nagabalasubramanian, S Periandy

Abstract

The Spectroscopic profile of Chromone-3-Carboxylic Acid (abbreviated as C3CA) was examined using FT-IR, FT-Raman, UV, 1H and 13C NMR techniques. The geometrical parameters and energies attained from DFT/B3LYP method with 6-311++G (d,p) basis sets calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and assigned the fundamental vibrations on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The XRD data obtained from the computed geometric parameters shows that there is little deviation in the structure due to the substitution of the COOH group in the molecule. Using NBO study, the delocalization of the electron and the corresponding attraction between the orbitals shows that the lone pair transition has higher stabilization energy when compared with remaining atoms. The 1H and 13C NMR chemical shifts are calculated using GIAO method and the experimental chemical shifts were analysed with theoretical values which reflects better coincidence. The electronic properties, HOMO and LUMO energies, are performed with TD-DFT reproduces good with the experimental findings. Besides, frontier molecular orbitals (FMO), the high reactive nature of the molecule is identified with MEP and global reactivity descriptor analysis are performed. In addition, the molecular docking study was conducted, and results of the docking study identified the sugar phosphatase inhibitor activity of the target molecule (C3CA).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。