Sex differences in exercise-induced physiological myocardial hypertrophy are modulated by oestrogen receptor beta

运动引起的生理性心肌肥大的性别差异受雌激素受体β的调节

阅读:5
作者:Elke Dworatzek, Shokoufeh Mahmoodzadeh, Carola Schubert, Christina Westphal, Joachim Leber, Angelika Kusch, Georgios Kararigas, Daniela Fliegner, Maryline Moulin, Renée Ventura-Clapier, Jan-Ake Gustafsson, Mercy M Davidson, Duska Dragun, Vera Regitz-Zagrosek

Aims

Oestrogen receptor alpha (ERα) and beta (ERβ) are involved in the regulation of pathological myocardial hypertrophy (MH). We hypothesize that both ER are also involved in physiological MH. Therefore, we investigated the role of ER in exercise-induced physiological MH in loss-of-function models and studied potential mechanisms of action.

Conclusion

The sex-specific response of the heart to exercise is modulated by ERβ. The greater increase in physiological MH in females is mediated by induction of AKT signalling, MAPK pathways, protein synthesis, and mitochondrial adaptation via ERβ.

Results

We performed 1 and 8 weeks of voluntary cage wheel running (VCR) with male and female C57BL/6J wild-type (WT), ERα- and ERβ-deleted mice. In line with other studies, female WT mice ran more than males (P ≤ 0.001). After 8 weeks of VCR, both sexes showed an increase in left ventricular mass (females: P ≤ 0.01 and males: P ≤ 0.05) with more pronounced MH in females (P < 0.05). As previously shown, female ERα-deleted mice run less than female WT mice (P ≤ 0.001). ERβ-deleted mice showed similar running performance as WT mice (females vs. male: P ≤ 0.001), but did not develop MH. Only female WT mice showed an increase in phosphorylation of serine/threonine kinase (AKT), ERK1/2, p38-mitogen-activated protein kinase (MAPK), and ribosomal protein s6, as well as an increase in the expression of key regulators of mitochondrial function and mitochondrial respiratory chain proteins (complexes I, III, and V) after VCR. However, ERβ deletion abolished all observed sex differences. Mitochondrial remodelling occurred in female WT-VCR mice, but not in female ERβ-deleted mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。