Pioglitazone Identifies a New Target for Aneurysm Treatment: Role of Egr1 in an Experimental Murine Model of Aortic Aneurysm

吡格列酮确定了动脉瘤治疗的新靶点:Egr1 在小鼠实验性主动脉瘤模型中的作用

阅读:5
作者:Nicoletta Charolidi, Grisha Pirianov, Evelyn Torsney, Stuart Pearce, Ken Laing, Axel Nohturfft, Gillian W Cockerill

Abstract

Peroxisome proliferator-activated receptor x03B3; agonists have been shown to inhibit angiotensin II (AngII)-induced experimental abdominal aortic aneurysms. Macrophage infiltration to the vascular wall is an early event in this pathology, and therefore we explored the effects of the peroxisome proliferator-activated receptor x03B3; agonist pioglitazone on AngII-treated macrophages. Using microarray-based expression profiling of phorbol ester-stimulated THP-1 cells, we found that a number of aneurysm-related gene changes effected by AngII were modulated following the addition of pioglitazone. Among those genes, polycystic kidney disease 1 (PKD1) was significantly up-regulated (multiple testing corrected p < 0.05). The analysis of the PKD1 proximal promoter revealed a putative early growth response 1 (EGR1) binding site, which was confirmed by chromatin immunoprecipitation (ChIP) and quantitative PCR. Further analysis of publicly available ChIP-sequencing data revealed that this putative binding site overlapped with a conserved EGR1 binding peak present in 5 other cell lines. Quantitative real-time PCR showed that EGR1 suppressed PKD1, while AngII significantly up-regulated PKD1, an effect counteracted by pioglitazone. Conversely, in EGR1 short hairpin RNA lentivirally transduced THP-1 cells, reduced EGR1 led to a significant up-regulation of PKD1, especially after treatment with pioglitazone. In vivo, deficiency of Egr1 in the haematopoietic compartment of mice completely abolished the incidence of CaCl2-induced aneurysm formation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。