Aim of the study
This study aimed to investigate the effects and elucidate possible potential mechanisms of PNS on bleomycin (BLM)-induced PF in rats. Materials and
Conclusions
PNS ameliorates BLM-induced PF in rats by modulating the RAS homeostasis, and is a new potential therapeutic agent for PF.
Methods
PF was induced in rats by intratracheal administration of bleomycin (BLM, 5 mg/kg). After disease model induction, the rats were treated with PNS (50, 100, or 200 mg/kg per day) or pirfenidone (PFD, 50 mg/kg per day) for 28 days. Lung function, histopathological changes, collagen deposition, and E- and N-cadherin levels in lung tissue were evaluated. The mechanism of action of PNS was investigated using tandem mass tag-based quantitative proteomics analysis. Immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), and Western blot analysis were performed to verify the proteomic
Results
PNS treatment improved lung function, ameliorated the BLM-induced increase in the lung coefficient, attenuated the degree of alveolar inflammation and fibrosis, and reduced the elevated collagen level in PF rats. PNS treatment also down-regulated the expression of N-cadherin while up-regulating the expression of E-cadherin. Proteomic and bioinformatic analyses revealed that the renin-angiotensin system (RAS) was closely related to the therapeutic effect of PNS. Immunohistochemistry, Western blot, and ELISA results indicated that PNS exerted its anti-fibrotic effect via regulation of the balance between the angiotensin-converting enzyme (ACE)-angiotensin (Ang)II-AngII receptor type 1 (AT1R) and ACE2-Ang(1-7)-MasR axes. Conclusions: PNS ameliorates BLM-induced PF in rats by modulating the RAS homeostasis, and is a new potential therapeutic agent for PF.
