Localized Photothermal Ablation Therapy of Obstructive Rectal Cancer Using a Nanofunctionalized Stent in a Mouse Model

在小鼠模型中使用纳米功能化支架对阻塞性直肠癌进行局部光热消融治疗

阅读:13
作者:Hong-Tao Hu, Jung-Hoon Park, Zhe Wang, Nader Bakheet, Shi-Jun Xu, Eun Ji Lee, Dong-Hyun Kim, Song Hee Kim, Ho-Young Song, Jae Yong Jeon, Suhwan Chang

Abstract

The self-expanding metal stent (SEMS) is a versatile, palliative treatment method for unresectable, malignant, non-vascular strictures. Colorectal cancer (CRC) is one of the candidates for the application of the SEMS, in combination with the photothermal ablation (PTA) technique that enhances its therapeutic efficacy. The objective of this study was to investigate the efficacy of stent-mediated PTA therapy in an endoscopy-guided, orthotopic rectal cancer model. A total of 30 of 40 mice with the tumor size of grade 4 were included and were divided into three groups of 10 mice each. Group A underwent a gold nanoparticle (AuNP)-coated SEMS but no near-infrared (NIR) irradiation, group B received an uncoated control SEMS with NIR irradiation, and group C received a AuNP-coated SEMS and NIR irradiation together. Colonoscopy and in vivo imaging, immunohistochemical analysis, and quantitative reverse-transcription polymerase chain reaction of major tumor markers were performed. Stent placement and PTA were technically successful using colonoscopy. The tumor grade reduction after PTA is significant in group C, compared with groups A or B (p < 0.001). Molecular analysis validated this observation with a significantly reduced Mapk1 proliferation marker or increased Jnk expression. Histological analysis confirmed the localized PTA therapy using AuNP-coated SEMS profoundly ablated tumor outgrowth through the stent. Our results indicate that this novel strategy of localized PTA therapy could be a promising option for palliative treatment of CRC and to support prolonged stent patency with a decreased tumor volume.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。