A defective dNTP pool hinders DNA replication in cell cycle-reactivated terminally differentiated muscle cells

dNTP 池缺陷会阻碍细胞周期重新激活的终末分化肌细胞中的 DNA 复制

阅读:5
作者:Deborah Pajalunga, Elisa Franzolin, Martina Stevanoni, Sara Zribi, Nunzia Passaro, Aymone Gurtner, Samantha Donsante, Daniela Loffredo, Lidia Losanno, Vera Bianchi, Antonella Russo, Chiara Rampazzo, Marco Crescenzi

Abstract

Terminally differentiated cells are defined by their inability to proliferate. When forced to re-enter the cell cycle, they generally cannot undergo long-term replication. Our previous work with myotubes has shown that these cells fail to proliferate because of their intrinsic inability to complete DNA replication. Moreover, we have reported pronounced modifications of deoxynucleotide metabolism during myogenesis. Here we investigate the causes of incomplete DNA duplication in cell cycle-reactivated myotubes (rMt). We find that rMt possess extremely low levels of thymidine triphosphate (dTTP), resulting in very slow replication fork rates. Exogenous administration of thymidine or forced expression of thymidine kinase increases deoxynucleotide availability, allowing extended and faster DNA replication. Inadequate dTTP levels are caused by selective, differentiation-dependent, cell cycle-resistant suppression of genes encoding critical synthetic enzymes, chief among which is thymidine kinase 1. We conclude that lack of dTTP is at least partially responsible for the inability of myotubes to proliferate and speculate that it constitutes an emergency barrier against unwarranted DNA replication in terminally differentiated cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。