Crosstalk between the aryl hydrocarbon receptor (AhR) and the peroxisome proliferator-activated receptor gamma (PPARγ) as a key factor in the metabolism of silver nanoparticles in neuroblastoma (SH-SY5Y) cells in vitro

芳烃受体 (AhR) 和过氧化物酶体增殖激活受体γ (PPARγ) 之间的串扰是体外神经母细胞瘤 (SH-SY5Y) 细胞中银纳米粒子代谢的关键因素

阅读:5
作者:Bartosz Skóra, Paulina Matuszewska, Martyna Masicz, Karolina Sikora, Magnolia Słomczewska, Paulina Sołtysek, Konrad A Szychowski

Abstract

The potential usefulness of silver nanoparticles (AgNPs) in anticancer therapy has been postulated for many years. However, little is known to date about the exact impact of such NPs on intracellular detoxication pathways. Therefore, the aim of this study was to determine the impact of AgNPs on the AhR-PPARγ-CYP1A1 pathway in neuroblastoma (SH-SY5Y) cells. The obtained results showed a decrease in the metabolic activity of the SH-SY5Y cells at the 50 and 100 μg/mL concentrations with an increase in caspase-3 activity. An increase in the intercellular ROS production was observed at the 1 and 10 μg/mL concentrations. The co-treatment of the AgNP-treated cells with the AhR and PPARγ inhibitors abolished the effect of the tested AgNPs in the SH-SY5Y cells. In turn, the CYP1A1 activity assay showed a decrease in this parameter in the AgNP-treated cells. Moreover, the gene expression analysis demonstrated that AgNPs were able to increase the AhR and CYP1A1 mRNA expression and decrease the PPARγ gene expression after the 6-h treatment. In turn, an increase in the AhR and PPARγ protein expression was observed after 24 h. Summarizing, the study shows for the first time that AgNPs with a 5-nm diameter size are able to exert a cytotoxic effect on SH-SH5Y cells in a ROS-dependent manner affect the AhR-PPARγ-CYP1A1 pathway inter alia by inhibiting the activity of CYP1A1. This is important due to given present research approaches using such NPs as enhancer agents in the modern PPARγ inhibitor-based anticancer therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。