Proteomic responses in the human dopaminergic LUHMES cell line to imidacloprid and its metabolites imidacloprid-olefin and desnitro-imidacloprid

人类多巴胺能 LUHMES 细胞系对吡虫啉及其代谢物吡虫啉-烯烃和脱硝基吡虫啉的蛋白质组学反应

阅读:8
作者:Patricia Sinclair, Julia Hakeem, Sreehari G Kumar, Dominik Loser, Kushan Dixit, Marcel Leist, Udo Kraushaar, Nadine Kabbani

Abstract

Neonicotinoids (neonics) are amongst the most commonly used class of pesticides globally. In the United States, imidacloprid (IMI) is extensively used for agriculture and in other common applications such as house-hold pest control. Regular exposure to IMI, and several of its known metabolites including IMI-olefin and desnitro-imidacloprid (DN-IMI), has been shown to be harmful to many organisms including mammals, birds, and fish. Studies show that neonics bind human nicotinicacetylcholine receptors (nAChRs) and cause cellular toxicity. In the dopaminergic Lund human mesencephalic (LUHMES) cell line, IMI and other neonics (10-100 μM) have been recently shown to activate intracellular calcium signaling through nAChRs. Thus, we examined proteomic responses of LUHMES cells to a 48-h treatment with 50 μM IMI, IMI-olefin, or DN-IMI. Our findings show differential effects of these neonics on cellular protein expression. Bioinformatic analysis of significantly altered proteins indicates an effect of IMI, IMI-olefin, and DN-IMI on protein synthesis and ribosomal function. These findings suggest a role for protein synthesis and transcriptional regulation in neonic-mediated dopaminergic neurotoxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。