Combined Synthesis of Cerium Oxide Particles for Effective Anti-Bacterial and Anti-Cancer Nanotherapeutics

氧化铈粒子的联合合成可用于有效的抗菌和抗癌纳米治疗

阅读:7
作者:Haibin Lu #, Lei Wan #, Xiaoling Li, Mu Zhang, Adnan Shakoor, Wenqiang Li, Xueyang Zhang

Conclusion

These data indicate that KF-CeO2 NPs synthesized using Kochiae Fructus extract are promising alternative treatments for MDR. In addition, this study will give the potential for the sustained development of biocompatible NPs with enhanced biological capabilities derived from vital pharmaceutical plants.

Discussion

The average size of the KF-CeO2 NPs was 11.3 ± 3.9 nm with spherical morphology. KF-CeO2 NPs demonstrated a greater than 95% bactericidal efficacy against MDR microorganisms. In addition, KF-CeO2 NPs strongly suppressed (more than 79%) the biofilms of MDR bacteria, indicating their potential for addressing antibiotic resistance issues. Compared to Kochiae Fructus extract and CH-CeO2 NPs, they exhibited significant cytotoxic effects (35.60% cell viability) on HeLa cancer cells. In addition, the KF-CeO2 NPs were shown to be highly biocompatible with hMSC and 3T3 cell lines (85.13% and 81.17% cell viability, respectively), suggesting that they may be employed in biological systems. Conclusion: These data indicate that KF-CeO2 NPs synthesized using Kochiae Fructus extract are promising alternative treatments for MDR. In addition, this study will give the potential for the sustained development of biocompatible NPs with enhanced biological capabilities derived from vital pharmaceutical plants.

Methods

Various spectroscopic approaches such as transmission electron microscope (TEM), powder X-ray diffraction (XRD), and energy-dispersive X-Ray (EDX) were used to characterize the KF-CeO2 NPs effectively. The antibacterial and biofilm inhibition activity of KF-CeO2 NPs against Gram-positive and Gram-negative multi-drug resistant (MDR) bacteria was determined using the serial dilution method and XTT assay. KF-CeO2 NPs were assessed for anticancer activity against HeLa cancer cells using an MTT assay. Cytobiocompatibility was determined in two normal cell lines (3T3 and hMSC).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。