HSB-1/HSF-1 pathway modulates histone H4 in mitochondria to control mtDNA transcription and longevity

HSB-1/HSF-1 通路调节线粒体中的组蛋白 H4,从而控制 mtDNA 转录和寿命

阅读:7
作者:Surojit Sural, Chung-Yi Liang, Feng-Yung Wang, Tsui-Ting Ching, Ao-Lin Hsu

Abstract

Heat shock factor-1 (HSF-1) is a master regulator of stress responses across taxa. Overexpression of HSF-1 or genetic ablation of its conserved negative regulator, heat shock factor binding protein 1 (HSB-1), results in robust life-span extension in Caenorhabditis elegans Here, we found that increased HSF-1 activity elevates histone H4 levels in somatic tissues during development, while knockdown of H4 completely suppresses HSF-1-mediated longevity. Moreover, overexpression of H4 is sufficient to extend life span. Ablation of HSB-1 induces an H4-dependent increase in micrococcal nuclease protection of both nuclear chromatin and mitochondrial DNA (mtDNA), which consequently results in reduced transcription of mtDNA-encoded complex IV genes, decreased respiratory capacity, and a mitochondrial unfolded protein response-dependent life-span extension. Collectively, our findings reveal a previously unknown role of HSB-1/HSF-1 signaling in modulation of mitochondrial function via mediating histone H4-dependent regulation of mtDNA gene expression and concomitantly acting as a determinant of organismal longevity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。