2',5'-Dihydroxychalcone-induced glutathione is mediated by oxidative stress and kinase signaling pathways

2',5'-二羟基查尔酮诱导的谷胱甘肽由氧化应激和激酶信号通路介导

阅读:5
作者:Remy Kachadourian, Subbiah Pugazhenthi, Kalpana Velmurugan, Donald S Backos, Christopher C Franklin, Joe M McCord, Brian J Day

Abstract

Hydroxychalcones are naturally occurring compounds that continue to attract considerable interest because of their anti-inflammatory and antiangiogenic properties. They have been reported to inhibit the synthesis of the inducible nitric oxide synthase and to induce the expression of heme oxygenase-1. This study examines the mechanisms by which 2',5'-dihydroxychalcone (2',5'-DHC) induces an increase in cellular glutathione (GSH) levels using a cell line stably expressing a luciferase reporter gene driven by antioxidant-response elements (MCF-7/AREc32). The 2',5'-DHC-induced increase in cellular GSH levels was partially inhibited by the catalytic antioxidant MnTDE-1,3-IP(5+), suggesting that reactive oxygen species (ROS) mediate the antioxidant adaptive response. 2',5'-DHC treatment induced phosphorylation of the c-Jun N-terminal kinase (JNK) pathway, which was also inhibited by MnTDE-1,3-IP(5+). These findings suggest a ROS-dependent activation of the AP-1 transcriptional response. However, whereas 2',5'-DHC triggered the NF-E2-related factor 2 (Nrf2) transcriptional response, cotreatment with MnTDE-1,3-IP(5+) did not decrease 2',5'-DHC-induced Nrf2/ARE activity, showing that this pathway is not dependent on ROS. Moreover, pharmacological inhibitors of mitogen-activated protein kinase (MAPK) pathways showed a role for JNK and p38MAPK in mediating the 2',5'-DHC-induced Nrf2 response. These findings suggest that the 2',5'-DHC-induced increase in GSH levels results from a combination of ROS-dependent and ROS-independent pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。