Amyotrophic Lateral Sclerosis-Associated Mutants of SOD1 Modulate miRNA Biogenesis through Aberrant Interactions with Exportin 5

肌萎缩侧索硬化症相关 SOD1 突变体通过与 Exportin 5 的异常相互作用调节 miRNA 生物合成

阅读:12
作者:Xingyuan Chen, Xiaomei He, Yen-Yu Yang, Yinsheng Wang

Abstract

Mutations in the SOD1 (superoxide dismutase 1) gene are associated with amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease. By employing ascorbate peroxidase-based proximity labeling, coupled with LC-MS/MS analysis, we uncovered 43 and 24 proteins exhibiting higher abundance in the proximity proteomes of SOD1G85R and SOD1G93A, respectively, than that of wild-type SOD1. Immunoprecipitation followed by western blot analysis indicated the preferential binding of one of these proteins, exportin 5 (XPO5), toward the two mutants of SOD1 over the wild-type counterpart. In line with the established function of XPO5 in pre-miRNA transport, we observed diminished nucleocytoplasmic transport of pre-miRNAs in cells with ectopic expression of the two SOD1 mutants over those expressing the wild-type protein. On the other hand, RT-qPCR results revealed significant elevations in mature miRNA in cells expressing the two SOD1 mutants, which are attributed to the diminished inhibitory effect of XPO5 on Dicer-mediated cleavage of pre-miRNA to mature miRNA. Together, our chemoproteomic approach led to the revelation of a novel mechanism through which ALS-associated mutants of SOD1 perturb miRNA biogenesis, that is, through aberrant binding toward XPO5.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。